# Cs 60 Question Paper Ignou Assignments

Home > BCA & MCA > Assignments

**BCA Assignments Help**/(July - Dec.) 2008

**MCA Assignments (Old Course)**

**MCA Assignments (New Course)**

**BCA Assignments**

1. We may take upto 24 hours depending on the work load. If you don't get a reply within 24 hours, email us again. 2. Do not pay for subjects that are listed as "under development", "not available" or "FREE". 3. A student should only make payment when the subject status is shown as "AVAILABLE". 4 . By default we send the material through email. If you want the material through courier or VPP, please specify that. ( Courier, VPP charges extra)5 . Please read Payment Modes, Frequently Asked Questions (FAQ) and TOS. |

AVAILABLE PAYMENT OPTIONS

BCA 5th Sem CS-68, 69, 70, 71 (Total): Rs. 500 only | ||

CS-68 Computer Networks: Rs. 150 only | ||

Available | View Questions | |

CS-69 TCP/IP Programming: Rs. 150 only | ||

Available | View Questions | |

CS-70 Software Engineering: Rs. 150 only | ||

Available | View Questions | |

CS-71 Computer Oriented Numerical Techniques: Rs. 150 only | ||

Available | View Questions | |

BCA 5th Sem CS-68, 69, 70, 71 (Discounted Price): Rs. 500 only | ||

AVAILABLE PAYMENT OPTIONS |

**Q1. Trace the following curve**

**y=x/(1+x ^{2})(5 Marks)**

Solution:

Given thaty=x/(1+x^{2})

therefore y(1+x^{2}) = x

therefore y + x^{2}y = x

therefore dy/dx + x^{2} (dy/dx) + 2xy = 1

therefore dy/dx(1+x^{2}) = 1 – 2xy

Putting the value of y

dy/dx(1+x^{2}) = 1 – 2x[x/(1+x^{2})]

= 1 – 2x^{2}/(1+x^{2})= [1 – x^{2} / 1 + x^{2}]

therefore dy/dx = [1 – x^{2} / (1 + x^{2})^{2}]

From eq^{n}(1)y=x/(1+x^{2})

So if y=0 and x=0

Then f(x,y) = y - x/(1+x^{2})= 0

Then curve

Y | 0 | 0.5 | 0.4 | 0.3 | Infinite |

x | 0 | 1 | 2 | 3 | -1 |

Curve is traced as follow

**Q2. Obtain fifth roots of 4+3i. (5 Marks)**

Solution:

Given Complex number is Z = 4 + 3i

**Q3. Prove that |4x – 5y| <= 4|x| + 5|y|(5 Marks)**

Solution:

L.H.S = |4x – 5y|

= (|4x – 5y|^{2})(because |x|^{2} = x for all x belong R)

= (4x – 5y)

Therefor |4x|^{2} + |5y|^{2} – 2|4x|.|5y|

= > (|4x| + |5y|)^{2} - 2|4x|.|5y|

Since |x|>= 0 for all x belong R

So taking square on both side

|4x – 5y| <= 4|x| + 5|y|

Given equation is

5x^{3} – 8x^{2} + 7x + 6 = 0

= > x^{3} – (8/5)x^{2} + (7/5)x + (6/5) = 0-----------(1)

Let a, b, c are the roots, so

a + b + c = 8/5-------------------(2)

ab + bc + ca = 7/5--------------------(3)

abc = -6/5--------------------(4)

Now Let roots of cubic equation is p, q, r such that

p = a^{2 }+ b^{2} + ba-------------------(5)

q = b^{2} +c^{2} + cb---------------------(6)

r = c^{2} + a^{2} + ca--------------------(7)

Then cube equation is

(x - p)(x - q)(x - r) = 0

= > (x - p)[x^{2} – (q + r)x + qr] = 0

= > x^{3} – x^{2} (p+q+r) + x(pq+qr+rp) – pqr = 0------------(8)

Now(p+q+r) = 2(a^{2} + b^{2} + c^{2}) + ab + bc + ca

= >(p+q+r) = 2[(a + b + c)^{2} – 2(ab + bc + ca)] + ab + bc + ca

= >(p+q+r) = 2(a + b + c)^{2} – 3(ab + bc + ca)

= >(p+q+r) = 2(8/5)^{2} – 3*(7/5)

= >(p+q+r) = 23/25-----------------------(9)

Similarly,pq+qr+rp = (a^{2} + b^{2} + ab)(b^{2 }+ c^{2} + bc)

= a^{2}b^{2} + a^{2}c^{2} + a^{2}bc + b^{4} + b^{2}c^{2} + b^{3}c + ab^{3} + abc^{2} + ab^{2}c

We can use,( a^{2} + b^{2} + c^{2})2 = a^{4} + b^{4} + c^{4} + 2(a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2})

Write equation in term of a^{2}, b^{2} and c^{2}

Putting the value from (5), (6) and (7) we get

pq+qr+rp = 22/25-------------------(10)

and pqr =-21/25--------------------(11)

putting the value of (9), (10) and (11) in (8)

= > x^{3} – x^{2} (23/25) + x(22/25) – (-21/25) = 0

= > 25x^{3} – 23x^{2} + 22x – 21 = 0

**Q5. Find the perimeter of the cord**

**Solution:**

## 0 comments